ITALIAN STATISTICAL SOCIETY "SMART STATISTICS FOR SMART APPLICATIONS"

Milan, June 19, 2019

A new tuning parameter selector in lasso regression

Gianluca SOTTILE¹ and Vito MR MUGGEO¹

¹Departments of Economics, Business and Statistics University of Palermo - Italy gianluca.sottile@unipa.it

Framework

Penalised linear regression framework

The proposed criterion

Real data application

Framework

- 2) Penalised linear regression framework
- 3 The proposed criterion
- 4 Real data application
- 5 Conclusions

Let consider a classical regression framework, where n is the number of observations and p the number of covariates, in the low-dimensional (n > p) and largely in the high-dimensional context $(n \ll p)$, only a small number of variables are truly informative. Let consider a classical regression framework, where n is the number of observations and p the number of covariates, in the low-dimensional (n > p) and largely in the high-dimensional context ($n \ll p$), only a small number of variables are truly informative.

Penalised regression methods

These methods operate maximising the penalised likelihood function

$$\frac{1}{n}\ell(\boldsymbol{\beta}) - P_{\lambda}(\boldsymbol{\beta}) \tag{1}$$

with respect to $\beta \in \mathbb{R}^p$ and $P_{\lambda}(\cdot)$ is a penalty function.

Least Absolute Shrinkage and Selection Operator

LASSO (Tibshirani, 1996)

The penalty function reduces to

$$P_{\lambda}(\cdot) = \lambda \sum_{j=1}^{p} |\beta_j|$$

where $\lambda \ge 0$ is known as tuning parameter

Least Absolute Shrinkage and Selection Operator

LASSO (Tibshirani, 1996)

The penalty function reduces to

$$P_{\lambda}(\cdot) = \lambda \sum_{j=1}^{p} |\beta_j|$$

where $\lambda \ge 0$ is known as tuning parameter

- allows to perform variable selection
- λ balances the trade-off between model fit and model sparsity

•
$$\lambda \to 0 \Rightarrow \hat{\beta}_{\lambda} \to \hat{\beta}^{OLS}$$

• $\lambda \to +\infty \Rightarrow \hat{\beta}_{\lambda} \to 0$

Least Absolute Shrinkage and Selection Operator

LASSO (Tibshirani, 1996)

The penalty function reduces to

$$P_{\lambda}(\cdot) = \lambda \sum_{j=1}^{p} |\beta_j|$$

"Which is the optimal tuning parameter?"

- allows to perform variable selection
- λ balances the trade-off between model fit and model sparsity

•
$$\lambda \to 0 \Rightarrow \hat{\beta}_{\lambda} \to \hat{\beta}^{OLS}$$

•
$$\lambda \to +\infty \Rightarrow \hat{\boldsymbol{\beta}}_{\lambda} \to \mathbf{0}$$

Framework

Penalised linear regression framework

3) The proposed criterion

- 4 Real data application
- 5 Conclusions

Penalised linear regression framework

Let consider $y \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and \boldsymbol{X} the model matrix $(n \times p)$,

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ is the unknown mean vector;
- σ^2 is the variance of the error.

Penalised linear regression framework

Let consider $y \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and \boldsymbol{X} the model matrix $(n \times p)$,

• $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ is the unknown mean vector;

• σ^2 is the variance of the error.

The mean vector is estimated by $\hat{\mu}_{\lambda} = X \hat{\beta}_{\lambda}$, where $\hat{\beta}_{\lambda}$ is the estimator that minimize the penalised least squares function

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \boldsymbol{x}_i^T\boldsymbol{\beta})^2 + \lambda\sum_{j=1}^{p}|\beta_j|.$$
(2)

Recap of theoretical assumptions of the LASSO framework

Being β^0 the true vector of coefficients and $S_0 := \{j : \beta_j^0 \neq 0\}$ the active set; any selection criteria deliver an estimator \hat{S} of S_0 . We assume:

- the "beta-min condition", i.e., $\min_{j \in S_0} |\beta_j^0| \ge c \cdot \sqrt{2\phi \log p}$;
- the true number of nonzero coefficients have to obey to $\mathsf{d}_0 \leq n/(2\log p);$
- the "irrepresentable condition" or "restricted eigenvalue condition" that is a condition on the model matrix, is a sufficient and necessary condition for consistent variable selection.

Penalised linear regression framework

Recap of previous proposals

$$\begin{split} &\mathsf{AIC} = \log(\hat{\sigma}_{\lambda}^{2}) + 2 \, \mathsf{d}_{\lambda} n^{-1} \\ &\mathsf{BIC} = \log(\hat{\sigma}_{\lambda}^{2}) + \log n \, \mathsf{d}_{\lambda} n^{-1} \\ &\mathsf{EBIC} = \log(\hat{\sigma}_{\lambda}^{2}) + (\log n + 2\gamma \log p) \, \mathsf{d}_{\lambda} n^{-1} \\ &\mathsf{GCV} = \hat{\sigma}_{\lambda}^{2} / \left(1 - \mathsf{d}_{\lambda} n^{-1}\right)^{2} \\ &\mathsf{GIC} = \log(\hat{\sigma}_{\lambda}^{2}) + \mathsf{c}_{n} \log p \, \mathsf{d}_{\lambda} n^{-1} \\ &\mathsf{k-fold} \ \mathsf{CV} = \sum_{s=1}^{k} \sum_{(y_{s}, \boldsymbol{x}_{s}) \in T^{-s}} \left(y_{s} - \boldsymbol{x}_{s}^{T} \hat{\boldsymbol{\beta}}_{\lambda}^{(s)}\right)^{2} \end{split}$$

Penalised linear regression framework

Recap of previous proposals

$$AIC = \log(\hat{\sigma}_{\lambda}^2) + 2 \, \mathsf{d}_{\lambda} n^{-1}$$

where:

•
$$\hat{\sigma}_{\lambda}^2 = \mathsf{RSS}_{\lambda}/(n - \mathsf{d}_{\lambda})$$

• $\gamma > 0$

• c_n is a parameter which depends on n.

k-fold CV
$$=\sum_{s=1}^k \sum_{(y_s, \boldsymbol{x}_s) \in T^{-s}} \left(y_s - \boldsymbol{x}_s^T \hat{\boldsymbol{\beta}}_{\lambda}^{(s)}\right)^2$$

Framework

The proposed criterion

4 Real data application

5 Conclusions

The proposed criterion

Weighted signal-to-noise ratio (WSNR)

We suggest to select λ as the maximizer of

$$\arg\max_{\lambda} w_{\lambda} \frac{|| \hat{\boldsymbol{\beta}}_{\lambda} ||_{1}}{\hat{\sigma}_{\lambda}},$$

where

- w_λ = d_λ⁻¹ is the model degrees of freedom, or the cardinality of the active set, i.e., |S_λ| = |{j : β̂_{λ,j} ≠ 0}|;
- σ_λ is the square root of the dispersion parameter that could be fixed or estimated.

(3)

Framework

2 Penalised linear regression framework

3 The proposed criterion

4 Real data application

5 Conclusions

It is a study on prostate cancer, measuring the correlation between the level of prostate-specific antigen (y = lpsa, log-psa) and:

- $x_1 =$ lcavol (log-cancer volume)
- $x_2 =$ lweight (log-prostate weight)
- $x_3 = age$ (age of patient)
- $x_4 = lbhp$ (log-amount of benign hyperplasia)
- $x_5 = svi$ (seminal vesicle invasion)
- $x_6 = lcp$ (log-capsular penetration)
- $x_7 =$ gleason (Gleason Score)
- $x_8 = pgg45$ (percent of Gleason scores 4 or 5)

Prostate Cancer data set (Stamey et al., 1989)

Performance assessment

- Training set (ts): n = 73 (75%)
- Validation set (vs): n = 24 (25%)
- Number of nonzero coefficients selected
- Prediction error: PE = $\sum_i (y_{i,\text{vs}} \boldsymbol{x}_{i,\text{vs}}^T \hat{\boldsymbol{\beta}}_{\text{ts}})^2 / n_{\text{vs}}$

Table 1: Tuning parameter selection of the Prostate Cancer data set. The number of nonzero coefficients, the tuning parameter selected (λ^*) and the prediction error are reported.

	Coeff	λ^*	PE
WSNR	3	0.1541	0.3994
AIC	4	0.0608	0.3990
BIC	4	0.0608	0.3990
EBIC	3	0.1541	0.3994
GCV	4	0.0608	0.3990
GIC	4	0.0608	0.3990
CV	6	0.0289	0.4027

Prostate Cancer data set (Stamey et al., 1989)

Sottile and Muggeo (UNIPA)

It is a study on diabetes. A quantitative measure of disease progression one year after baseline as well as Ten baseline variables are collected by n = 442 diabetes patients.

- *x*₁ = age
- $x_2 = \sec x$
- $x_3 = body mass index (bmi)$
- $x_4 = \text{average blood pressure (map)}$
- $x_{5:10} =$ blood serum measurements (tc, ldl, hdl, tch, ltg, glu)
- $x_{11:64} = interaction terms$

Diabetes data set (Efron et al., 2003)

Performance assessment

- Training set (ts): n = 332 (75%)
- Validation set (vs): n = 110 (25%)
- Number of nonzero coefficients selected
- Prediction error: $PE = \sum_{i} (y_{i,vs} x_{i,vs}^T \hat{\beta}_{ts})^2 / n_{vs}$

Table 2: Tuning parameter selection of the Diabetes data set. The number of nonzero coefficients, the tuning parameter selected (λ^*) and the prediction error are reported.

	Coeff	λ^*	PE
WSNR	4	10.05	3304.13
AIC	14	3.61	3029.81
BIC	4	10.05	3304.13
EBIC	4	10.05	3304.13
GCV	14	3.61	3029.81
GIC	4	10.05	3304.13
CV	18	2.73	3042.47

Diabetes data set (Efron et al., 2003)

Sottile and Muggeo (UNIPA)

Framework

- 2 Penalised linear regression framework
- 3 The proposed criterion
- 4 Real data application

5 Conclusions

• We proposed a new criterion to choose the regularization parameter;

- We proposed a new criterion to choose the regularization parameter;
- Our proposal can be extended to generalized linear models, e.g., Poisson and logistic regression;

- We proposed a new criterion to choose the regularization parameter;
- Our proposal can be extended to generalized linear models, e.g., Poisson and logistic regression;
- We applied our proposal to prostate cancer data and our proposal was able to select, three non-zero covariates log-cancer volume, log-cancer weight and seminal vesicle invasion;

- We proposed a new criterion to choose the regularization parameter;
- Our proposal can be extended to generalized linear models, e.g., Poisson and logistic regression;
- We applied our proposal to prostate cancer data and our proposal was able to select, three non-zero covariates log-cancer volume, log-cancer weight and seminal vesicle invasion;
- We applied our proposal to diabetes data and our proposal was able to select, four non-zero covariates body mass index, average blood pressure, hdl and ltg (blood serum measurements).

Thanks for the attention!!!