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Framework

Background

Let be y a response variable of length n, and x a n × q matrix of
covariates. The conditional quantile function could be written as:

Q(p | x) = xTβ(p) in
quantile regression (QR, Koenker and Bassett Jr, (1978)), where
quantiles are estimated one at the time and the estimated
coefficients are generally unsmooth functions of p;
Q(p | x ,θ) = xTβ(p | θ) = xTθb(p) in
quantile regression coefficients modeling (QRCM, Frumento and
Bottai, (2016)), where the estimated coefficients are functions of
the order of the quantiles.
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Penalized quantile regression coefficients modeling

QRCM

A parametric approach that permits modeling the entire quantile
function. Consider, for example, describing β(p | θ) by k -th degree
polynomial functions:

βj(p | θ) = θj0 + θj1p + . . .+ θjkpk , j = 1, . . . ,q.

Each covariate has (k + 1) associated parameters, for a total of
q × (k + 1) model coefficients.
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Penalized quantile regression coefficients modeling

QRCMPEN

Issue
When q is large, estimation may become difficult and the model may
be poorly identified, causing the variability to grow out of control.

Solution
an L1-penalty term in the QRCM framework (λ‖θ‖1)

(a new LASSO-type model)

Standard L1-QR

It focus on model selection when estimating one quantile at a time.
This is inefficient and makes it difficult to interpret the results, because
some coefficients could be only significant at some quantiles.
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Penalized quantile regression coefficients modeling

Penalized integrated loss function (PILM)

We propose minimizing

L
(λ)
PEN(θ) =

∫ 1

0
L(β(p | θ)) + λ

q∑
j=1

k∑
h=1

| θjh | dp,

where L(β(p)) is the loss function of standard quantile regression
given by L =

∑n
i=1 (p − I(yi ≤ xT

i β(p)))(yi − xT
i β(p)), and λ ≥ 0 is the

tuning parameter.

Optimization and Implementation
qrcm R package + coordinate descent algo⇒ qrcmNP R package
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Tuning parameter selection

AIC and BIC criteria

With a given set of real data, the true model is not known. In penalized
regression, the tuning parameter λ balances the trade-off between
goodness of fit and efficiency.

Following the definitions proposed by Schwarz, 1978; Lee et al., 2014;
Zheng and Peng, 2017, we propose to use

AIC(λ) = log L
(λ)
PEN(θ̂) + 2df(λ)n−1, (1)

BIC(λ) = log L
(λ)
PEN(θ̂) + log(n)df(λ)n−1. (2)

where θ̂ is the estimator of θ obtained by minimizing the PILM at a
given value of λ, and df(λ) reflects the number of nonzero coefficients.
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Variables selection for inspiratory capacity

Model selection in inspiratory capacity

Inspiratory Capacity (IC) data
A study carried out in 1988-1991 in Northern Italy

n = 2,201 subjects (49% Male and 51% Female)
q = 9 (age, height, body mass index (BMI), sex, current smoking
status, occupational exposure, cough, wheezing and asthma)

The model basis

Intercept: b(p) = [1, log(p), log(1− p)]T

Covariates: a shifted Legendre polynomial (SLP) up to a 5th

degree (Abramowitz and Stegun, 1964)
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Figure 1: Gradient plot and coefficient profile plot versus log(λ) (top panels);
AIC and BIC curves versus log(λ) (bottom panels), for the inspiratory capacity data.
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Variables selection for inspiratory capacity

Model selection in inspiratory capacity

Table 1: Model selection based on different criteria. We report the number of
parameters, the number of selected covariates, the optimal λ value, the value
of the minimized loss function, and the p-value of a Kolmogorov-Smirnov
goodness-of-fit test.

Criterion n. of parameters n. of covariates λ Loss P-value KS

AIC 31/39 10/10 20.79 293.31 .77
BIC 19/39 5/10 60.47 294.01 .53
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Figure 2: Unpenalized QRCM estimates of β(p) under the model selected by BIC

(see Table 1). Confidence bands are displayed as shaded areas. The broken lines
connect the coefficients of ordinary quantile regression estimated at a grid of
quantiles. The dashed line indicates the zero.
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Conclusions

To sum-up

We proposed a new LASSO-type model in the QRCM framework;

We proposed two different criteria to select the optimal tuning parameter;
Results on the Inspiratory Capacity data showed that our proposal is an
efficient tool to recover the most informative covariates with a high
probability;
A computationally efficient algorithm has been implemented in the
qrcmNP package in R.
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Thanks for the attention!!!
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