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Abstract
We propose a new method to select the tuning parameter in lasso regression. Unlike the previous proposals, the method is

iterative and thus it is particularly efficient when multiple tuning parameters have to be selected. The method also applies to
more general regression frameworks, such as generalized linear models with non-normal responses. Simulation studies show
our proposal performs well, and most of times, better when compared with the traditional Bayesian Information Criterion and
Cross validation.

Introduction
In the context of high-dimensional data, typically only a small number of variables are truly informative whilst
other are redundant. Selecting the appropriate variables is a crucial step of data analysis process. An undertted
model excluding truly informative variables may lead to severe estimation bias in model fit, whereas an overt-
ted model including redundant uninformative variables, increases the estimated variance and hinders model
interpretation.

Among dierent variable selection methods discussed in literature, penalized regression models have gained
popularity and attractiveness. Selection of variables is controlled by the tuning parameter which encour-
ages model sparsity. Well known procedures include the Least Absolute Shrinkage and Selection Operator
(LASSO, Tibshirani, 1996), the Smoothy Clipped Abso- lute Deviation (SCAD, Fan and Li, 2001), the Adap-
tive LASSO (ALASSO, Zou, 2006), and the Elastic Net (Zou and Hastie, 2005). In penalized regression,
the tuning parameters balance the trade-o between model fit and model sparsity, and selecting an appropriate
value is the key point.

In literature, traditional criteria to select the tuning parameter include Cross-Validation (CV), Generalized
Cross Validation (GCV), Mallows Cp, Akaike Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) or its extension.

Main Objectives
1. To find a goodness of fit which could correctly select the true active set of variables in the classical Gaussian

model framework.
2. To build an iterative algorithm to use the ‘new’ goodness of fit to select efficiently the tuning parameter λ.
3. To compare the ‘new’ goodness of fit with the trditional criteria CV and (E)BIC in terms of Mean Squared

Error and Degree of freedom.

Materials and Methods
In LASSO regression with sample size n and p covariates, the objective is to find a solution of the following
optimization problem:

min
β

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj|. (1)

As discussed in the Introduction, typically one fixes the tuning parameter λ that balances the trade-off be-
tween sparsity and fitting, and then minimizes objective (1) by means of any of optimization algorithms
recently developed, e.g. gradient descent or lars.

To set up an iterative algorithm to find λ, we borrow the Schall algorithm idea successfully employed to
estimate the variance components in random effects models. More specifically, starting from an initial guess,
λ(0) = .001, say, the algorithm alternates estimation of lasso regression (at fixed λ) and updating of the tuning
parameter via the variance ratio properly modified to account for the L1 penalty:

||y −Xβλ||22/(n− df )

K ∗ ||β||1/df
. (2)

Simulation Studies
Some simulations have been undertaken to compare the traditional selection criteria, BIC, GCV, CV with re-
spect to the proposed algorithm. To assess the performance of each selection criterion, we report degrees of
freedom (df , the number of non null coefficients), and the mean squared error (MSE) corresponding to OLS
fits including only the informative covariates selected.

The simulated data come from y = Xβ + ε, where X ∼ Np(0p,Σp), (Σjk = 0.5|j−k|) and ε ∼ N(0, 1).
For two sample sizes (50, 200), two different scenarios have been considered: in the first scenario (n > p),
p ∈ {.15n, .25n, . . . , .95n} and true coefficients β = (5, 4, 3, 2, 1, 0, . . . , 0)T . In the second scenario, n < p,
p ∈ {1n, 2n, . . . , 64n} and β as in the first scenario.

Results
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Figure 1: Performance of Tuning Parameter Selector criteria in LASSO Regression ((E)BIC=A, CV=B and the proposed algorithm,
C): MSE for n = 50 sample size and several p/n ratios. Results based on 500 simulation runs.

n = 50 n = 200

p/n (E)BIC CV New (E)BIC CV New

n > p
0.15 5.7 6.4 5.1 6.3 10.8 5.0
0.25 6.2 7.6 5.2 6.1 11.6 5.0
0.35 6.5 8.8 5.1 6.4 13.1 5.0
0.45 6.6 9.2 5.4 6.2 13.5 5.0
0.55 7.2 10.5 5.5 6.4 15.0 5.0
0.65 6.6 10.4 5.3 6.0 14.4 5.0
0.75 7.0 11.0 5.3 6.3 15.1 5.0
0.85 6.7 10.9 5.7 6.1 16.0 5.0
0.95 7.1 11.1 5.9 6.2 15.5 5.0

n ≤ p
1 7.1 11.1 5.8 6.4 16.0 5.0
2 7.5 13.7 5.1 6.3 17.6 5.0
4 8.6 17.0 5.9 6.2 20.0 5.0
8 9.2 18.2 6.4 6.3 23.9 5.0
16 9.0 19.3 6.6 6.4 27.9 5.0
32 11.0 18.1 7.3 6.6 32.8 5.0
64 20.2 19.2 9.6 6.5 31.1 5.0

Table 1: Performance of Tuning Parameter Selector criteria in LASSO Regression ((E)BIC, CV and the proposed algorithm, New).
Average degrees of freedom for n = 50, 200 sample sizes and several p/n ratios. Results based on 500 simulation runs.

Table 1 report average degrees of freedom (df ), the number of correctly selected parameters are for all crite-
ria 5/5. Figure 1 report average mean squared errors (MSE). The scenario n = 200 has been omitted because
the results are similar to n = 50 sample size as shown in Table 1.

Results show that the proposed method performs better than the others in all the scenarios, not only in terms
of model fit but also in terms of degrees of freedom. Also, The proposed iterative algorithm always exhibits
the lowest MSE, but when n < p, particularly with small samples (n = 50), the new methods performs largely
better than the other competitors.

Conclusions
•A ‘new’ approach/criteria to select iteratively the tuning parameter λ of lasso regression has been proposed.

• The ‘new’ method attains comparatively better performance in all considered settings.

Forthcoming Research
Results have been presented for the classical Gaussian model, but the proposed approach is favored to be
employed in generalized linear models with binary or count responses. Application in very high-dimensional
settings (n � p) that are today one of the most challenging concerns, represents a noteworthy point to be
investigated.
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