European Meeting of Statisticians

Palermo 22-26 July 2019

An Extension of the Censored Gaussian Graphical Lasso Estimator

Luigi $AUGUGLIARO^1$, Gianluca $SOTTILE^1$ and Veronica $VINCIOTTI^2$

¹Departments of Economics, Business and Statistics University of Palermo - Italy gianluca.sottile@unipa.it

²College of Engineering, Design and Physical Sciences Brunel University - London

Contents

Introduction

2 Censored Gaussian Graphical Model

3 Conditional Censored Gaussian Graphical Model

4 Computational aspects

5 Simulation study

Expression Data: Complex Data from Different Platforms

- A goal in genomic is to understand interaction among genes
- These relationships are represented by a genetic network, where *nodes* represent genes and *edges* describe the interaction among them
- Typically many variables, few units (" $p \gg n$ ")
- A number of platforms to measure expression (mRNA) levels:
 - quantitative real-time reverse transcription-PCR (RT-qPCR)
 - Inext-generation sequencing (RNA-seq)
 - 3 microarray hybridization

Expression Data: Complex Data from Different Platforms

Aim: Recover/infer the underlying regulatory network from data

• These relationships are represented by a genetic network, where *nodes* represent genes and *edges* describe the interaction among them

- Typically many variables, few units (" $p \gg n$ ")
- A number of platforms to measure expression (mRNA) levels:
 - Q quantitative real-time reverse transcription-PCR (RT-qPCR)
 - 2 next-generation sequencing (RNA-seq)
 - 3 microarray hybridization

. <u>500. ... 5</u>0

Sparse Gaussian Graphical Models

GGM in genomics:

Let $\boldsymbol{y} = (y_1, \dots, y_p)^{\top}$ be a *p*-dimensional vector of random variables **1** A normality assumption: $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with density

$$\phi(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Theta}) = (2\pi)^{-p/2} |\boldsymbol{\Theta}|^{1/2} \exp\{-1/2(\boldsymbol{y}-\boldsymbol{\mu})^{\top} \boldsymbol{\Theta}(\boldsymbol{y}-\boldsymbol{\mu})\}.$$

2 A graph $\mathcal{G} = {\mathcal{V}, \mathcal{E}}$, where \mathcal{V} is the set of p nodes (genes) and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ the set of undirected edges (genomic interactions)

Sparse Gaussian Graphical Models

GGM in genomics:

Let $\boldsymbol{y} = (y_1, \dots, y_p)^{\top}$ be a *p*-dimensional vector of random variables **1** A normality assumption: $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with density

$$\phi(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Theta}) = (2\pi)^{-p/2} |\boldsymbol{\Theta}|^{1/2} \exp\{-1/2(\boldsymbol{y}-\boldsymbol{\mu})^{\top} \boldsymbol{\Theta}(\boldsymbol{y}-\boldsymbol{\mu})\}.$$

- A graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} is the set of p nodes (genes) and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ the set of undirected edges (genomic interactions)
 - The precision matrix $\Theta = \Sigma^{-1}$ provides the structure of the conditional independence graph (non-zeros \leftrightarrow edges)
 - Graphical lasso (glasso) estimator (Yuan and Lin, 2007)

$$\widehat{\Theta} = \arg \max_{\Theta \succ 0} \frac{1}{n} \sum_{i=1}^{n} \phi(\boldsymbol{y}_i; \boldsymbol{0}, \Theta) - \rho \sum_{h \neq k} |\theta_{hk}|.$$
(1)

Motivation: RT-qPCR data are censored

- Repeated cycles of DNA amplification followed by expression measurements, with a max of (typically) 40 cycles
- The cycle at which expression reaches a fixed threshold is reported
- If a gene is not expressed, the threshold is not reached after the maximum number of cycles. For this reason, the resulting data is right-censored

The Censoring Mechanism

Let $\boldsymbol{l} = (l_1, \ldots, l_p)^{\top}$ and $\boldsymbol{u} = (u_1, \ldots, u_p)^{\top}$, with $l_h < u_h$ for $h = 1, \ldots, p$ the left and right censoring values, respectively.

 y_h is observed if it is inside the interval $[l_h, u_h]$, censored from below if $y_h < l_h$ or censored from above if $y_h > u_h$.

The Censoring Mechanism

Let $\boldsymbol{l} = (l_1, \ldots, l_p)^{\top}$ and $\boldsymbol{u} = (u_1, \ldots, u_p)^{\top}$, with $l_h < u_h$ for $h = 1, \ldots, p$ the left and right censoring values, respectively.

 y_h is observed if it is inside the interval $[l_h, u_h]$, censored from below if $y_h < l_h$ or censored from above if $y_h > u_h$.

To obtain the joint distribution of the observed data, we follow the approach proposed by Little and Rubin (2002).

Let $oldsymbol{r} = (r_1, \ldots, r_p)^{ op}$ encode the censoring patterns, with hth element

$$r_{h} = \begin{cases} -1, & \text{if} & y_{h} < l_{h} \\ 0, & \text{if} & l_{h} \le y_{h} \le u_{h} \\ +1, & \text{if} & y_{h} > u_{h}. \end{cases}$$

The Density Function under Censoring

Given a pattern of censored values, the vertex set can be partitioned into $\mathcal{V} = o \cup c$, where

 $\boldsymbol{o} = \{h \in \mathcal{V} : r_j = 0\}$ and $\boldsymbol{c} = \{h \in \mathcal{V} : r_j \neq 0\}$

then y can be splitted into $y_o = (y_h)_{h \in o}$ and $y_c = (y_h)_{h \in c}$.

The Density Function under Censoring

Given a pattern of censored values, the vertex set can be partitioned into $\mathcal{V}=\boldsymbol{o}\cup\boldsymbol{c},$ where

 $\boldsymbol{o} = \{h \in \mathcal{V} : r_j = 0\}$ and $\boldsymbol{c} = \{h \in \mathcal{V} : r_j \neq 0\}$

then y can be splitted into $y_o = (y_h)_{h \in o}$ and $y_c = (y_h)_{h \in c}$.

The joint probability distribution of $\{y_o^{\top}, r\}$ is obtained by integrating y_c out of the joint distribution of $\{y_o^{\top}, y_c^{\top}, r\}$. After straightforward algebra we have:

$$\varphi(\boldsymbol{y}_{o}, \boldsymbol{r}; \boldsymbol{\mu}, \Theta) = \left\{ \int_{D_{\boldsymbol{c}}} \phi(\boldsymbol{y}_{o}, \boldsymbol{y}_{c}; \boldsymbol{\mu}, \Theta) d\boldsymbol{y}_{\boldsymbol{c}} \right\} I(\boldsymbol{l}_{o} \leq \boldsymbol{y}_{o} \leq \boldsymbol{u}_{o}), \quad (2)$$

where $D_{\boldsymbol{c}} = (-\infty, \boldsymbol{l}_{\boldsymbol{c}^-}] \times [\boldsymbol{u}_{\boldsymbol{c}^+}, +\infty).$

Contents

2 Censored Gaussian Graphical Model

Sparse Inference for cGGM

Consider a sample of n independent observations, the observed log-likelihood function can be written as

$$\ell(\boldsymbol{\mu}, \Theta) = \sum_{i=1}^{n} \log \int_{D_{c_i}} \phi(\boldsymbol{y}_{io_i}, \boldsymbol{y}_{ic_i}; \boldsymbol{\mu}, \Theta) \mathsf{d} \boldsymbol{y}_{ic_i} = \sum_{i=1}^{n} \log \varphi(\boldsymbol{y}_{io_i}, \boldsymbol{r}_i; \boldsymbol{\mu}, \Theta).$$

Sparse Inference for cGGM

Consider a sample of n independent observations, the observed log-likelihood function can be written as

$$\ell(\boldsymbol{\mu}, \Theta) = \sum_{i=1}^{n} \log \int_{D_{c_i}} \phi(\boldsymbol{y}_{io_i}, \boldsymbol{y}_{ic_i}; \boldsymbol{\mu}, \Theta) d\boldsymbol{y}_{ic_i} = \sum_{i=1}^{n} \log \varphi(\boldsymbol{y}_{io_i}, \boldsymbol{r}_i; \boldsymbol{\mu}, \Theta).$$

Augugliaro et al. (2018) proposed the following estimator

$$\{\hat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Theta}}\} = \arg \max_{\boldsymbol{\mu}, \boldsymbol{\Theta} \succ 0} \frac{1}{n} \ell(\boldsymbol{\mu}, \boldsymbol{\Theta}) - \rho \sum_{h \neq k} |\theta_{hk}|, \tag{3}$$

called censored Gaussian Graphical Lasso (cglasso).

Contents

Introduction

Conditional Censored Gaussian Graphical Model

4 Computational aspects

5 Simulation study

Extension: Conditional Censored Gaussian Graphical Model

Genetical genomics experiments measure both genetic variants and gene expression data on the same subjects

Conditional censored GGM

$$E(\boldsymbol{y} \mid \boldsymbol{x}) = \boldsymbol{B}^{\top} \boldsymbol{x}$$
 (4)

where

- \boldsymbol{x}_i is a vector of q covariates;
- $\boldsymbol{B} = \{\boldsymbol{\beta}_k\}$ is the matrix of regression coefficients;
- $oldsymbol{eta}_k$ is the kth column of $oldsymbol{B}$;
- assumption: x is fully observed.

Sparse inference

Assuming that x is fully observed, the log-likelihood function of the observed data can be written as follows

$$\ell(\boldsymbol{B}, \Theta) = \sum_{i=1}^{n} \log \int_{D_{c_i}} \phi(\boldsymbol{y}_{io_i}, \boldsymbol{y}_{ic_i} \mid \boldsymbol{x}_i; \boldsymbol{B}, \Theta) d\boldsymbol{y}_{ic_i},$$
(5)

where

$$\phi(\boldsymbol{y} \mid \boldsymbol{x}_i; \boldsymbol{B}, \Theta) = (2\pi)^{-p/2} |\Theta|^{1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{B}^\top \boldsymbol{x})^\top \Theta(\boldsymbol{y} - \boldsymbol{B}^\top \boldsymbol{x})\right\}$$

Sparse inference

Assuming that x is fully observed, the log-likelihood function of the observed data can be written as follows

$$\ell(\boldsymbol{B}, \Theta) = \sum_{i=1}^{n} \log \int_{D_{c_i}} \phi(\boldsymbol{y}_{io_i}, \boldsymbol{y}_{ic_i} \mid \boldsymbol{x}_i; \boldsymbol{B}, \Theta) d\boldsymbol{y}_{ic_i},$$
(5)

where

$$\phi(\boldsymbol{y} \mid \boldsymbol{x}_i; \boldsymbol{B}, \Theta) = (2\pi)^{-p/2} |\Theta|^{1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{B}^{\top} \boldsymbol{x})^{\top} \Theta(\boldsymbol{y} - \boldsymbol{B}^{\top} \boldsymbol{x})
ight\}$$

The conditional cglasso estimator is defined as:

$$\{\widehat{\boldsymbol{B}},\widehat{\boldsymbol{\Theta}}\} = \arg\max_{\boldsymbol{B},\boldsymbol{\Theta}\succ\boldsymbol{0}} \frac{1}{n} \ell(\boldsymbol{B},\boldsymbol{\Theta}) - \lambda \sum_{k=1}^{p} \theta_{kk} \|\boldsymbol{\beta}_{k}\|_{1} - \rho \sum_{h\neq k} |\theta_{hk}|.$$
 (6)

Contents

Introduction

2 Censored Gaussian Graphical Model

3 Conditional Censored Gaussian Graphical Model

4 Computational aspects

5 Simulation study

A double penalized EM algorithm:

- 1: repeat
- 2: **E-Step**: compute the statistics $\widehat{Y} = (\hat{y}_{i,h})$ and $\widehat{C} = (\hat{y}_{i,hk})$

A double penalized EM algorithm:

1: repeat
2:
$$\hat{y}_{i,h} = \begin{cases}
y_{ih} & \text{if } r_{ih} = 0 \\
E(y_{ih} \mid \boldsymbol{y}_{ic_i} \in D_{c_i}, \boldsymbol{x}_i) & \text{otherwise,} \\
\hat{y}_{i,hk} &= \begin{cases}
y_{ih}y_{ik} & \text{if } r_{ih} = 0 \text{ and } r_{ik} = 0 \\
y_{ih}E(y_{ik} \mid \boldsymbol{y}_{ic_i} \in D_{c_i}, \boldsymbol{x}_i) & \text{if } r_{ih} = 0 \text{ and } r_{ik} \neq 0 \\
E(y_{ih} \mid \boldsymbol{y}_{ic_i} \in D_{c_i}, \boldsymbol{x}_i)y_{ik} & \text{if } r_{ih} \neq 0 \text{ and } r_{ik} = 0 \\
E(y_{ih}y_{ik} \mid \boldsymbol{y}_{ic_i} \in D_{c_i}, \boldsymbol{x}_i) & \text{if } r_{ih} \neq 0 \text{ and } r_{ik} = 0 \\
E(y_{ih}y_{ik} \mid \boldsymbol{y}_{ic_i} \in D_{c_i}, \boldsymbol{x}_i) & \text{if } r_{ih} \neq 0 \text{ and } r_{ik} \neq 0
\end{cases}$$

A double penalized EM algorithm:

1: repeat

2: **E-Step**: compute the statistics $\widehat{Y} = (\hat{y}_{i,h})$ and $\widehat{C} = (\hat{y}_{i,hk})$

and
$$\widehat{S} = n^{-1} \{ \widehat{C} - \widehat{Y}^{\top} X \widehat{B} - \widehat{B}^{\top} X^{\top} \widehat{Y} + \widehat{B}^{\top} X^{\top} X \widehat{B} \}$$
 (7)

A double penalized EM algorithm:

1: repeat

2: **E-Step**: compute the statistics $\widehat{Y} = (\hat{y}_{i,h})$ and $\widehat{C} = (\hat{y}_{i,hk})$

and
$$\widehat{S} = n^{-1} \{ \widehat{C} - \widehat{Y}^{ op} X \widehat{B} - \widehat{B}^{ op} X^{ op} \widehat{Y} + \widehat{B}^{ op} X^{ op} X \widehat{B} \}$$
 (7)

3: **M-Step**: solve the maximization problem

$$\max_{\boldsymbol{B},\boldsymbol{\Theta}\succ\boldsymbol{0}} \log \det \boldsymbol{\Theta} - \operatorname{tr}\{\boldsymbol{\Theta}\widehat{\boldsymbol{S}}\} - \lambda \sum_{k=1}^{p} \theta_{kk} \|\boldsymbol{\beta}_{k}\|_{1} - \rho \sum_{h \neq k} |\theta_{hk}| \qquad (8)$$

4: **until** a convergence criterion is met

$$\log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \lambda \sum_{k=1}^{p} \theta_{kk} \| \beta_k \|_1 - \rho \sum_{h \neq k} |\theta_{hk}|$$
(9)

is a bi-convex function of B and Θ (Rothman et al., 2010), its maximization can be done using the following procedure:

$$\log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \lambda \sum_{k=1}^{p} \theta_{kk} \| \beta_k \|_1 - \rho \sum_{h \neq k} |\theta_{hk}|$$
(9)

is a bi-convex function of B and Θ (Rothman et al., 2010), its maximization can be done using the following procedure:

- 1: repeat
- 2: given $\widehat{\Theta}$ and \widehat{S} , solve the following problem:

$$\min_{\boldsymbol{B}} \operatorname{tr}\{\widehat{\Theta}\widehat{\boldsymbol{S}}\} + \lambda \sum_{k=1}^{p} \widehat{\theta}_{kk} \|\boldsymbol{\beta}_{k}\|_{1}$$
(10)

$$\log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \lambda \sum_{k=1}^{p} \theta_{kk} \| \beta_k \|_1 - \rho \sum_{h \neq k} |\theta_{hk}|$$
(9)

is a bi-convex function of B and Θ (Rothman et al., 2010), its maximization can be done using the following procedure:

- 1: repeat
- 2: given $\widehat{\Theta}$ and \widehat{S} , solve the following problem:

$$\min_{\boldsymbol{B}} \operatorname{tr}\{\widehat{\Theta}\widehat{\boldsymbol{S}}\} + \lambda \sum_{k=1}^{p} \widehat{\theta}_{kk} \|\boldsymbol{\beta}_{k}\|_{1}$$
(10)

3: given \widehat{B} , update \widehat{S} and solve the following problem:

$$\max_{\Theta \succ 0} \log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \rho \sum_{h \neq k} |\theta_{hk}|$$
(11)

4: until a convergence criterion is met

$$\log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \lambda \sum_{k=1}^{p} \theta_{kk} \| \beta_k \|_1 - \rho \sum_{h \neq k} |\theta_{hk}|$$
(9)

is a bi-convex function of B and Θ (Bothman et al. 2010), its maximization car To solve Eq (10)

1: Since

2

$$\widehat{\boldsymbol{S}} = n^{-1} \{ \widehat{\boldsymbol{C}} - \widehat{\boldsymbol{Y}}^\top \boldsymbol{X} \widehat{\boldsymbol{B}} - \widehat{\boldsymbol{B}}^\top \boldsymbol{X}^\top \widehat{\boldsymbol{Y}} + \widehat{\boldsymbol{B}}^\top \boldsymbol{X}^\top \boldsymbol{X} \widehat{\boldsymbol{B}} \}$$

is a function of the matrix \boldsymbol{B} .

- 3: Now by $\widehat{S}(\beta_k)$ we denote the matrix \widehat{S} seen as a function of the vector β_k while the other columns of the matrix B are held fixed to the current estimates.
- 4: until a convergence criterion is met

0)

Since the penalized $\ensuremath{\mathcal{Q}}\xspace$ -function

is

C

	n
ſ	Multivariate LASSO algorithm
	Problem:
a ar	$\min_{\boldsymbol{B}} \operatorname{tr} \{ \widehat{\Theta} \widehat{\boldsymbol{S}} \} + \lambda \sum_{k=1} \hat{\theta}_{kk} \ \boldsymbol{\beta}_k \ _1$
1:	1: repeat 2: for $k = 1$ n do
2:	3: compute
l	$ ilde{y}_{i,k} = \hat{y}_{i,k} + \hat{ heta}_{kk}^{-1} \sum_{h eq k}^p \hat{ heta}_{hk} \{ \hat{y}_{i,h} - oldsymbol{x}_i^ op \hat{oldsymbol{eta}}_h \}$
3:	4: compute
l	$\hat{oldsymbol{eta}}_{oldsymbol{k}} = rg\min_{oldsymbol{eta}_k} rac{1}{n} \ \widetilde{oldsymbol{Y}}_k - oldsymbol{X} oldsymbol{eta}_k \ ^2 + \lambda \ oldsymbol{eta}_k \ _1$
4:	5: update the k th column of $\widehat{m{B}}$ using $\hat{m{eta}}_{m{k}}$ 6: end for
	7: until convergence criterion is met

Augugliaro, Sottile and Vinciotti

9)

on

0)

1)

$$\log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \lambda \sum_{k=1}^{p} \theta_{kk} \| \beta_k \|_1 - \rho \sum_{h \neq k} |\theta_{hk}|$$
(9)

is a bi-convex function of B and Θ (Rothman et al., 2010), its maximization can be done using the following procedure:

1: repeat
2: To solve Eq (11)
Standard algorithm, e.g., the block-coordinate descent algorithm
proposed by Friedman.
3: siven
$$\widehat{B}$$
 undate \widehat{S} and solve the following problem:

given B, update S and solve the following problem:

$$\max_{\Theta \succ 0} \log \det \Theta - \operatorname{tr} \{ \Theta \widehat{S} \} - \rho \sum_{h \neq k} |\theta_{hk}|$$
(11)

4: until a convergence criterion is met

Contents

1 Introduction

- 2 Censored Gaussian Graphical Model
- 3 Conditional Censored Gaussian Graphical Model
- 4 Computational aspects
- Simulation study

Simulation study: setting I

- 1: X is simulated from a gaussian distribution with zero expected value and sparse precision matrix (random structure)
- 2: for each k = 1, ..., p, we randomly drawn $S_k \subset \mathcal{V}$, with $|S_k| = 2$, then:

$$\beta_{hk} \sim \mathcal{U}_{[0.3,0.7]},$$

the remaining regression coefficients are equal to zero

3: the intercepts β_{0k} are used to set the probability of right-censoring of the first K response variables:

$$\sum_{i=1}^{n} \Pr\{y_{ik} \ge u_k\}/n = 0.4, \quad \text{ for } \quad k = 1, \dots, K$$
$$\sum_{i=1}^{n} \Pr\{y_{ik} \ge u_k\}/n = 10^{-6}, \quad \text{ for } \quad k = K+1, \dots, p$$

Simulation study: setting II

4: the precision matrix Θ is such that $\theta_{hh}=1$ and

 $\theta_{h(h+j)} \sim \mathcal{U}_{[0.30, 0.35]}$

with j = 1, ..., 4 and $h \in \{1, 6, 11, ..., p\}$

Simulation study: setting III

- 5: finally, in each simulation run $oldsymbol{Y}$ is simulated by the following steps:
 - the matrix \boldsymbol{E} is simulated from $\mathcal{N}(\boldsymbol{0};\Theta)$;
 - Y = XB + E;
 - each y_{ik} greater than u_k is treated as right-censored $(u_k = 40)$.

In order to evaluate the behaviour of the proposed estimator we let:

- n = 100;
- $K = 0.4 \times p;$
- $p,q \in \{50,200\}.$

Competitors:

- conditional glasso estimator (Yin and Li, 2011);
- mglasso estimator (Städler and Bühlmann, 2012).

Simulation study: evaluation criteria

Sparse Recovery

$$\label{eq:Precision} \mathsf{Precision} = \frac{TP}{TP+FP} \quad \mathsf{and} \quad \mathsf{Recall} = \frac{TP}{TP+FN}$$

The Precision-Recall curves are obtained fixing a tuning parameter, for example ρ , and varying the remaining tuning parameter.

Mean Square Error

$$\begin{aligned} \mathsf{MSE}(\widehat{\boldsymbol{B}}) &= E\{\|\widehat{\boldsymbol{B}} - \boldsymbol{B}^{\star}\|_{F}^{2}\} \\ \mathsf{MSE}(\widehat{\boldsymbol{\Theta}}) &= E\{\|\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}^{\star}\|_{F}^{2}\} \end{aligned}$$

where $\|\cdot\|_F^2$ denotes the Frobenius norm.

Simulation study: results on \widehat{B} (Sparsity Recovery) Setting: n = 100, p = 50, q = 50

Simulation study: results on \widehat{B} (Sparsity Recovery) Setting: n = 100

Simulation study: results on \widehat{B} (Mean Square Error) Setting: n = 100, p = 50, q = 50

Simulation study: results on \widehat{B} (Mean Square Error) Setting: n = 100

Simulation study: results on $\widehat{\Theta}$ (Sparsity Recovery) Setting: n = 100

Simulation study: results on $\widehat{\Theta}$ (Mean Square Error) Setting: n = 100

Conclusions and future work

Summary:

- a new method for sparse conditional Gaussian graphical models with censored data;
- an efficient EM algorithm.

Conclusions and future work

Summary:

- a new method for sparse conditional Gaussian graphical models with censored data;
- an efficient EM algorithm.

Future work:

- censored covariates;
- a measure of goodness-of-fit;
- cglasso package.

References

Augugliaro, L., Mineo, A.M. and Wit, E.C. (2016). ℓ_1 -Penalized methods in high-dimensional Gaussian Markov random fields. In: Computational Network Analysis with R: Applications in Biology, Medicine, and Chemistry. Wiley-VCH, pp. 201-267.

Augugliaro, L., Abbruzzo, A. and Vinciotti, V. (2018). ℓ_1 -Penalized censored Gaussian graphical model. Biostatistics. kxy043 https://doi.org/10.1093/biostatistics/kxy043

Friedman, J.H., Hastie T. and Tibshirani, R. (2008). *Sparce inverse covariance estimation with the graphical lasso.* Biostatistics, 9(3):432–441.

Rothman, A. J., Levina, E. and Zhu J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19(4):947–962.

Städler, N. and Bühlmann, P. (2012). *Missing values: sparse inverse covariance estimation and an extension to sparse regression*. Statistics and Computing, 22(1):219–235.

Yin, J. and Li, H. (2011). A sparse conditional Gaussian graphical model for analysis of genetical genomics data. The Annals of Applied Statistics, 5(4):2630–2650.

