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Expression Data: Complex Data from Different Platforms

A goal in genomic is to understand interaction among genes
These relationships are represented by a genetic network, where nodes
represent genes and edges describe the interaction among them
Typically many variables, few units (“p� n”)
A number of platforms to measure expression (mRNA) levels:

1 quantitative real-time reverse transcription-PCR (RT-qPCR)
2 next-generation sequencing (RNA-seq)
3 microarray hybridization

Aim: Recover/infer the underlying regulatory network from data
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Sparse Gaussian Graphical Models

GGM in genomics:
Let y = (y1, . . . , yp)> be a p-dimensional vector of random variables

1 A normality assumption: y ∼ N (µ,Σ) with density

φ(y;µ,Θ) = (2π)−p/2|Θ|1/2 exp{−1/2(y − µ)>Θ(y − µ)}.

2 A graph G = {V, E}, where V is the set of p nodes (genes) and
E ⊂ V × V the set of undirected edges (genomic interactions)

The precision matrix Θ = Σ−1 provides the structure of the
conditional independence graph (non-zeros ↔ edges)
Graphical lasso (glasso) estimator (Yuan and Lin, 2007)

Θ̂ = arg max
Θ�0

1
n

n∑
i=1

φ(yi; 0,Θ)− ρ
∑
h6=k

|θhk|. (1)
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Motivation: RT-qPCR data are censored

Repeated cycles of DNA amplification followed by expression
measurements, with a max of (typically) 40 cycles
The cycle at which expression reaches a fixed threshold is reported
If a gene is not expressed, the threshold is not reached after the
maximum number of cycles. For this reason, the resulting data is
right-censored
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The Censoring Mechanism

Let l = (l1, . . . , lp)> and u = (u1, . . . , up)>, with lh < uh for h = 1, . . . , p
the left and right censoring values, respectively.

yh is observed if it is inside the interval [lh, uh], censored from below if
yh < lh or censored from above if yh > uh.

To obtain the joint distribution of the observed data, we follow the approach
proposed by Little and Rubin (2002).

Let r = (r1, . . . , rp)> encode the censoring patterns, with hth element

rh =


−1, if yh < lh

0, if lh ≤ yh ≤ uh

+1, if yh > uh.
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The Density Function under Censoring

Given a pattern of censored values, the vertex set can be partitioned into
V = o ∪ c, where

o = {h ∈ V : rj = 0} and c = {h ∈ V : rj 6= 0}

then y can be splitted into yo = (yh)h∈o and yc = (yh)h∈c.

The joint probability distribution of {y>o , r} is obtained by integrating yc
out of the joint distribution of {y>o ,y>c , r}. After straightforward algebra
we have:

ϕ(yo, r;µ,Θ) =
{∫

Dc
φ(yo,yc;µ,Θ)dyc

}
I(lo ≤ yo ≤ uo), (2)

where Dc=(−∞, lc− ]×[uc+ ,+∞).
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Sparse Inference for cGGM

Consider a sample of n independent observations, the observed log-likelihood
function can be written as

`(µ,Θ) =
n∑

i=1
log

∫
Dci

φ(yioi ,yici ;µ,Θ)dyici =
n∑

i=1
logϕ(yioi , ri;µ,Θ).

Augugliaro et al. (2018) proposed the following estimator

{µ̂, Θ̂} = arg max
µ,Θ�0

1
n
`(µ,Θ)− ρ

∑
h6=k

|θhk|, (3)

called censored Gaussian Graphical Lasso (cglasso).
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Extension: Conditional Censored Gaussian Graphical Model

Genetical genomics experiments measure both genetic variants and gene
expression data on the same subjects

Conditional censored GGM

E(y | x) = B>x (4)

where
- xi is a vector of q covariates;
- B = {βk} is the matrix of
regression coefficients;

- βk is the kth column of B;
- assumption: x is fully observed.
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Sparse inference

Assuming that x is fully observed, the log-likelihood function of the observed
data can be written as follows

`(B,Θ) =
n∑

i=1
log

∫
Dci

φ(yioi ,yici | xi;B,Θ)dyici , (5)

where

φ(y | xi;B,Θ) = (2π)−p/2|Θ|1/2 exp
{
−1

2(y −B>x)>Θ(y −B>x)
}
.

The conditional cglasso estimator is defined as:

{B̂, Θ̂} = arg max
B,Θ�0

1
n
`(B,Θ)− λ

p∑
k=1

θkk‖βk‖1 − ρ
∑
h6=k

|θhk|. (6)
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Sparse inference: computational aspects

A double penalized EM algorithm:

1: repeat
2: E-Step: compute the statistics Ŷ = (ŷi,h) and Ĉ = (ŷi,hk)

ŷi,h =
{
yih if rih = 0
E(yih | yici ∈ Dci ,xi) otherwise,

ŷi,hk =


yihyik if rih = 0 and rik = 0
yihE(yik | yici ∈ Dci ,xi) if rih = 0 and rik 6= 0
E(yih | yici ∈ Dci ,xi)yik if rih 6= 0 and rik = 0
E(yihyik | yici ∈ Dci ,xi) if rih 6= 0 and rik 6= 0

and Ŝ = n−1{Ĉ − Ŷ >XB̂ − B̂>X>Ŷ + B̂>X>XB̂} (7)

3: M-Step: solve the maximization problem

max
B,Θ�0

log det Θ− tr{ΘŜ} − λ
p∑

k=1
θkk‖βk‖1 − ρ

∑
h6=k

|θhk| (8)

4: until a convergence criterion is met
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3: M-Step: solve the maximization problem

max
B,Θ�0

log det Θ− tr{ΘŜ} − λ
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Since the penalized Q-function

log det Θ− tr{ΘŜ} − λ
p∑

k=1
θkk‖βk‖1 − ρ

∑
h6=k

|θhk| (9)

is a bi-convex function ofB and Θ (Rothman et al., 2010), its maximization
can be done using the following procedure:

1: repeat
2: given Θ̂ and Ŝ, solve the following problem:

min
B

tr{Θ̂Ŝ}+ λ
p∑

k=1
θ̂kk‖βk‖1 (10)

3: given B̂, update Ŝ and solve the following problem:

max
Θ�0

log det Θ− tr{ΘŜ} − ρ
∑
h6=k

|θhk| (11)

4: until a convergence criterion is met

To solve Eq (10)

Since

Ŝ = n−1{Ĉ − Ŷ >XB̂ − B̂>X>Ŷ + B̂>X>XB̂}

is a function of the matrix B.

Now by Ŝ(βk) we denote the matrix Ŝ seen as a function of the
vector βk while the other columns of the matrix B are held fixed
to the current estimates.

Proposition

Minimization problem

min
βk

tr{Θ̂Ŝ(βk)}+ λθ̂kk‖βk‖1, (12)

is equivalent to

min
βk

1
n
‖Ỹk −Xβk‖2 + λ‖βk‖1, (13)

where Ỹk is a vector with ith element

ỹi,k = ŷi,k + θ̂−1
kk

p∑
h6=k

θ̂hk{ŷi,h − x>i β̂h}. (14)

Multivariate LASSO algorithm

Problem:

min
B

tr{Θ̂Ŝ}+ λ

p∑
k=1

θ̂kk‖βk‖1

1: repeat
2: for k = 1 . . . p do
3: compute

ỹi,k = ŷi,k + θ̂−1
kk

p∑
h6=k

θ̂hk{ŷi,h − x>i β̂h}

4: compute

β̂k = arg min
βk

1
n
‖Ỹk −Xβk‖2 + λ‖βk‖1

5: update the kth column of B̂ using β̂k
6: end for
7: until convergence criterion is met

To solve Eq (11)

Standard algorithm, e.g., the block-coordinate descent algorithm
proposed by Friedman.
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tr{Θ̂Ŝ}+ λ

p∑
k=1

θ̂kk‖βk‖1

1: repeat
2: for k = 1 . . . p do
3: compute
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θ̂hk{ŷi,h − x>i β̂h}

4: compute

β̂k = arg min
βk

1
n
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tr{Θ̂Ŝ}+ λ

p∑
k=1

θ̂kk‖βk‖1

1: repeat
2: for k = 1 . . . p do
3: compute
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tr{Θ̂Ŝ}+ λ

p∑
k=1

θ̂kk‖βk‖1

1: repeat
2: for k = 1 . . . p do
3: compute
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vector βk while the other columns of the matrix B are held fixed
to the current estimates.

Proposition

Minimization problem

min
βk

tr{Θ̂Ŝ(βk)}+ λθ̂kk‖βk‖1, (12)

is equivalent to

min
βk

1
n
‖Ỹk −Xβk‖2 + λ‖βk‖1, (13)

where Ỹk is a vector with ith element

ỹi,k = ŷi,k + θ̂−1
kk

p∑
h6=k

θ̂hk{ŷi,h − x>i β̂h}. (14)

Multivariate LASSO algorithm

Problem:

min
B

tr{Θ̂Ŝ}+ λ

p∑
k=1

θ̂kk‖βk‖1

1: repeat
2: for k = 1 . . . p do
3: compute

ỹi,k = ŷi,k + θ̂−1
kk

p∑
h6=k

θ̂hk{ŷi,h − x>i β̂h}

4: compute

β̂k = arg min
βk

1
n
‖Ỹk −Xβk‖2 + λ‖βk‖1

5: update the kth column of B̂ using β̂k
6: end for
7: until convergence criterion is met

To solve Eq (11)

Standard algorithm, e.g., the block-coordinate descent algorithm
proposed by Friedman.
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tr{Θ̂Ŝ(βk)}+ λθ̂kk‖βk‖1, (12)

is equivalent to

min
βk

1
n
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θ̂hk{ŷi,h − x>i β̂h}. (14)

Multivariate LASSO algorithm

Problem:

min
B

tr{Θ̂Ŝ}+ λ
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Simulation study: setting I

1: X is simulated from a gaussian distribution with zero expected value
and sparse precision matrix (random structure)

2: for each k = 1, . . . , p, we randomly drawn Sk ⊂ V, with |Sk| = 2, then:

βhk ∼ U[0.3,0.7],

the remaining regression coefficients are equal to zero
3: the intercepts β0k are used to set the probability of right-censoring of

the first K response variables:
n∑

i=1
Pr{yik ≥ uk}/n = 0.4, for k = 1, . . . ,K

n∑
i=1

Pr{yik ≥ uk}/n = 10−6, for k = K + 1, . . . , p
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Simulation study: setting II

4: the precision matrix Θ is such that θhh = 1 and

θh(h+j) ∼ U[0.30,0.35]

with j = 1, . . . 4 and h ∈ {1, 6, 11, . . . , p}
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Simulation study: setting III

5: finally, in each simulation run Y is simulated by the following steps:
- the matrix E is simulated from N (0; Θ);
- Y = XB +E;
- each yik greater than uk is treated as right-censored (uk = 40).

In order to evaluate the behaviour of the proposed estimator we let:
- n = 100;
- K = 0.4× p;
- p, q ∈ {50, 200}.

Competitors:
- conditional glasso estimator (Yin and Li, 2011);
- mglasso estimator (Städler and Bühlmann, 2012).
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Simulation study: evaluation criteria

Sparse Recovery

Precision = TP

TP + FP
and Recall = TP

TP + FN

The Precision-Recall curves are obtained fixing a tuning parameter, for ex-
ample ρ, and varying the remaining tuning parameter.

Mean Square Error

MSE(B̂) = E{‖B̂ −B?‖2F }
MSE(Θ̂) = E{‖Θ̂−Θ?‖2F }

where ‖ · ‖2F denotes the Frobenius norm.
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Simulation study: results on B̂ (Sparsity Recovery)
Setting: n = 100, p = 50, q = 50
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Simulation study: results on B̂ (Sparsity Recovery)
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Simulation study: results on B̂ (Mean Square Error)
Setting: n = 100, p = 50, q = 50
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Simulation study: results on B̂ (Mean Square Error)
Setting: n = 100
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Simulation study: results on Θ̂ (Sparsity Recovery)
Setting: n = 100
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Simulation study: results on Θ̂ (Mean Square Error)
Setting: n = 100
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Conclusions and future work

Summary:
- a new method for sparse conditional Gaussian graphical models with
censored data;

- an efficient EM algorithm.

Future work:
- censored covariates;
- a measure of goodness-of-fit;
- cglasso package.
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