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Expression Data: Complex Data from Different Platforms

@ A goal in genomic is to understand interaction among genes
@ These relationships are represented by a genetic network, where nodes
represent genes and edges describe the interaction among them
e Typically many variables, few units (“p > n")
@ A number of platforms to measure expression (mMRNA) levels:
@ quantitative real-time reverse transcription-PCR (RT-qPCR)
@ next-generation sequencing (RNA-seq)
© microarray hybridization
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Aim: Recover/infer the underlying regulatory network from data
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Sparse Gaussian Graphical Models

GGM in genomics:

Let y = (y1,.--, yp)—r be a p-dimensional vector of random variables

@ A normality assumption: y ~ N (i, X) with density
b(y; 1, ©) = (27) P*|OM? exp{~1/2(y — p) 'Oy — p)}.

@ A graph G ={V,E}, where V is the set of p nodes (genes) and
E CV x V the set of undirected edges (genomic interactions)
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Sparse Gaussian Graphical Models

GGM in genomics:

Let y = (y1,.--, yp)—r be a p-dimensional vector of random variables

@ A normality assumption: y ~ N (i, X) with density

d(y; 1, ©) = (21) /210 exp{—1/2(y — p) " O(y — p)}.

@ A graph G ={V,E}, where V is the set of p nodes (genes) and
E CV x V the set of undirected edges (genomic interactions)

@ The precision matrix © = X! provides the structure of the
conditional independence graph (non-zeros <> edges)

@ Graphical lasso (glasso) estimator (Yuan and Lin, 2007)

N 1 n
= - E i, U, ©) — . 1
O argma%(ni 1qi)(y 0,0) phE k|9hk| (1)
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Motivation: RT-qPCR data are censored

Amplification
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@ Repeated cycles of DNA amplification followed by expression
measurements, with a max of (typically) 40 cycles

@ The cycle at which expression reaches a fixed threshold is reported

o If a gene is not expressed, the threshold is not reached after the
maximum number of cycles. For this reason, the resulting data is
right-censored
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The Censoring Mechanism

Letl = (ll,...,lp)—r and u = (ul,...,up)T, with I, <wup forh=1,...,p
the left and right censoring values, respectively.

yp is observed if it is inside the interval [lj,,up], censored from below if
yp < lp, or censored from above if y; > uy.
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The Censoring Mechanism

Letl = (ll,...,lp)—r and u = (ul,...,up)T, with I, <wup forh=1,...,p
the left and right censoring values, respectively.

yp is observed if it is inside the interval [lj,,up], censored from below if
yp < lp, or censored from above if y; > uy.

To obtain the joint distribution of the observed data, we follow the approach
proposed by Little and Rubin (2002).

Let ? = (r1,...,7mp) "

encode the censoring patterns, with hth element
-1, if yn <y,

0, if lh<yn<up
+1, if Yp > Up,.

Th
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The Density Function under Censoring

Given a pattern of censored values, the vertex set can be partitioned into
Y = o U ¢, where

o={heV :r;j=0} and c={heV :r;#0}

then y can be splitted into Yo = (Yn)neo and ye = (Yn)nee-
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The Density Function under Censoring

Given a pattern of censored values, the vertex set can be partitioned into
Y = o U ¢, where

o={heV :r;j=0} and c={heV :r;#0}

then y can be splitted into Yo = (Yn)neo and ye = (Yn)nee-

The joint probability distribution of {y/,r} is obtained by integrating y.

out of the joint distribution of {yJ,yZ,r}. After straightforward algebra

we have:

©(Yo, T3 14, @) = {/D ¢(y07 Yes s G)dyc} I(lo < Yo < uo), (2)

c

where De=(—00,l.-] X [te+, +00).
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Sparse Inference for cGGM

Consider a sample of n independent observations, the observed log-likelihood
function can be written as

{(p,0) = Zlog/D O(Yio» Yics; 1> O)dyic, = > 108 0(Yio;, 745 1, ©).

=1 i=1
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Sparse Inference for cGGM

Consider a sample of n independent observations, the observed log-likelihood
function can be written as

E( Z 10g/ ¢ y’LOZu ylcza p’u @)dyzc, Z log QO yZOZ) r’w Ha @)

i=1 =1

Augugliaro et al. (2018) proposed the following estimator

L,
{i,0} = arg Jmax —£(p,0) —p > 10nkl; (3)
htk

called censored Gaussian Graphical Lasso (cglasso).
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Extension: Conditional Censored Gaussian Graphical Model

Genetical genomics experiments measure both genetic variants and gene
expression data on the same subjects

Conditional censored GGM

Ey|z)=B'x (4)
where

- x; is a vector of ¢ covariates;

- B = {B4} is the matrix of
regression coefficients;

By, is the kth column of B;

assumption: « is fully observed.
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Sparse inference

Assuming that x is fully observed, the log-likelihood function of the observed
data can be written as follows

E(Ba @) = Z log/D ¢(yioia Yic; | Ti; B, G)dy’iciv
=1 i

(5)

where

oy | 25 B.6) = (2m) 0] exp {~S(y~ B'a) Oy~ Bla).
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Sparse inference

Assuming that x is fully observed, the log-likelihood function of the observed
data can be written as follows

(B,0) =3 log / S(Yioss Yie, | T3 B, O)dyic,, (5)
=1

where

1
oy | 2:B.0) = (2m) 7210 exp |~ (y - Ba) Oly - Ba)}.
The conditional cglasso estimator is defined as:

{B,6} = arg Jnax *5 B,0) )\ZekkHﬁkHl —p > 0wkl (6)
©-0 htk
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Sparse inference: computational aspects

A double penalized EM algorithm:

1: repeat .
2: E-Step: compute the statistics Y = (¢;,) and C' = (; ni)

Augugliaro, Sottile and Vinciotti EMS 2019 July 22, 2019 14 /29



Gip =4 Ui
N E(Yin | Yie; € D¢, i)

YihYik

YinE(Yik | Yic; € De;, i)
E(Yin | Yie; € De;, i) yik
E(yinyir | Yic; € De;, i)

if 7, =0
otherwise,

if ;b =0and rj =0

if ;o =0 and r; #0
if 75 £ 0 and rj, =0
if 75 # 0 and ryp £ 0
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Sparse inference: computational aspects

A double penalized EM algorithm:

1: repeat .
2: E-Step: compute the statistics Y = (¢;,) and C' = (; ni)

andS=n"YC-Y'XB-B'X'Y+B'X'XB} (7)
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Sparse inference: computational aspects

A double penalized EM algorithm:

1: repeat e R
2: E-Step: compute the statistics Y = (¢;,) and C' = (; ni)

andS=n"YC-Y'XB-B'X'Y+B'X'XB} (7)
3: M-Step: solve the maximization problem

P
max logdet © — tr{O8} — A> " O llBelli — p D _ 10wk (8)
B,0>0 k=1 h#k

4: until a convergence criterion is met
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Since the penalized Q-function

p
logdet © — tr{08} — A" OullBrlli — Y 101l (9)
k=1 hk

is a bi-convex function of B and © (Rothman et al., 2010), its maximization
can be done using the following procedure:
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Since the penalized Q-function
P
logdet © — tr{O8} — A Ol Brlly — D Onil (9)
k=1 hk

is a bi-convex function of B and © (Rothman et al., 2010), its maximization
can be done using the following procedure:

1: repeat
2: given © and S, solve the following problem:
AN AN p A
min tr{©5} + 2D Okl Brla (10)
k=1
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Since the penalized Q-function
p
logdet © — tr{O8} — A Ol Brlly — D Onil (9)
k=1 hk

is a bi-convex function of B and © (Rothman et al., 2010), its maximization
can be done using the following procedure:

1. repeat R
2: given © and S, solve the following problem:
AN AN p A
rrgntr{@S}—l—)\ZQkkH,BkHl (10)
k=1
3 given B, update S and solve the following problem:
maxlog det © — tr{OS} — pg;k 10| (11)

4; until a convergence criterion is met
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To solve Eq (10)

Since

S=n{C-Y'XB-B'X'Y+B'X'XB}

is a function of the matrix B.

Now by S'\(ﬂk) we denote the matrix S seen as a function of the
vector 3, while the other columns of the matrix B are held fixed
to the current estimates.
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Proposition

Minimization problem

I%in tr{Ag(Bk)} + /\ékkH,@kHl»

k

is equivalent to

1=
min —[|Y;, — X Bx[* + Al Bk,
B N

where ﬁ is a vector with ith element

p
g = Gige + 0t D Onie{in — B}
hk
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Multivariate LASSO algorithm

Problem:

P
min tr{®S} + A Z Ork||Bel1
k=1
1: repeat
2: fork=1...pdo
3: compute

P
ik = ik + O Z Oni{9in — ) Br}
otk

compute
o .1l
Br = argmin — ||Yi — X B |*> + A Bk |1
Br N

update the kth column of B using Br
end for
. until convergence criterion is met
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To solve Eq (11)

Standard algorithm, e.g., the block-coordinate descent algorithm
proposed by Friedman.
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Simulation study: setting |

1: X is simulated from a gaussian distribution with zero expected value
and sparse precision matrix (random structure)
2: foreach k =1,...,p, we randomly drawn S C V, with |Sg| = 2, then:

Brk ~ Ujo.3,0.7]

the remaining regression coefficients are equal to zero
3: the intercepts [y are used to set the probability of right-censoring of
the first K response variables:

n
S Priyg > up}/n=04, for k=1,....K
i=1

n
ZPr{yik >upl/n=10"% for k=K+1,....p
i=1
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Simulation study: setting Il

4: the precision matrix © is such that 65, = 1 and

On(h+j) ~ Uj0.30,0.35)

with j=1,...4and h € {1,6,11,...,p}

@ @
020 @
S @ @0
o @
®
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Simulation study: setting Il

5: finally, in each simulation run Y is simulated by the following steps:

- the matrix E is simulated from N (0;©);
-Y=XB+E;
- each y; greater than uy is treated as right-censored (uj = 40).

In order to evaluate the behaviour of the proposed estimator we let:
- n = 100;
- K =04 xp;
- p,q € {50,200}.

Competitors:
- conditional glasso estimator (Yin and Li, 2011);
- mglasso estimator (Stadler and Biihlmann, 2012).
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Simulation study: evaluation criteria

Sparse Recovery

TP TP
Precision = ————— and Recall =

TP+ FP TP+ FN
The Precision-Recall curves are obtained fixing a tuning parameter, for ex-
ample p, and varying the remaining tuning parameter.

Mean Square Error

MSE(B) = E{|B - B"[#}

MSE(©) = E{|6-0*|%}

where || - ||2. denotes the Frobenius norm.
EMS 2019
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Simulation study: results on B (Sparsity Recovery)

Setting: n = 100, p = 50, ¢ = 50
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Simulation study: results on B (Sparsity Recovery)
Setting: n = 100
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Simulation study: results on B (Mean Square Error)
Setting: n = 100, p = 50, ¢ = 50
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Simulation study:
Setting: n = 100
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Simulation study: results on © (Sparsity Recovery)
Setting: n = 100
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Simulation study:
Setting: n = 100
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Conclusions and future work

Summary:

- a new method for sparse conditional Gaussian graphical models with
censored data;

- an efficient EM algorithm.
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Conclusions and future work

Summary:

- a new method for sparse conditional Gaussian graphical models with
censored data;

- an efficient EM algorithm.

Future work:
- censored covariates;
- a measure of goodness-of-fit;

- cglasso package.

Augugliaro, Sottile and Vinciotti EMS 2019 July 22, 2019 27 /29



References

Augugliaro, L., Mineo, A.M. and Wit, E.C. (2016). ¢;-Penalized methods in high-dimensional
Gaussian Markov random fields. In: Computational Network Analysis with R: Applications in
Biology, Medicine, and Chemistry. Wiley-VCH, pp. 201-267.

Augugliaro, L., Abbruzzo, A. and Vinciotti, V. (2018). ¢1-Penalized censored Gaussian graphical
model. Biostatistics. kxy043 https://doi.org/10.1093/biostatistics/kxy043

Friedman, J.H., Hastie T. and Tibshirani, R. (2008). Sparce inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432—-441.

Rothman, A. J., Levina, E. and Zhu J. (2010). Sparse multivariate regression with covariance
estimation. Journal of Computational and Graphical Statistics, 19(4):947-962.

Stadler, N. and Biithlmann, P. (2012). Missing values: sparse inverse covariance estimation and
an extension to sparse regression. Statistics and Computing, 22(1):219-235.

Yin, J. and Li, H. (2011). A sparse conditional Gaussian graphical model for analysis of genetical
genomics data. The Annals of Applied Statistics, 5(4):2630-2650.

Augugliaro, Sottile and Vinciotti EMS 2019 July 22, 2019 28 /29


https://doi.org/10.1093/biostatistics/kxy043

spas stuutiyi @ nandn supas akiba tack
tan:aéo nuhune ryc I buznyg Pa\t ':s Ir(natondl taiku
wado matondo marahaba ashakor mahalomés
t tenkly Z I e waybale
sah rahmat

° yekemeleobngadomeharbam

bayarlalaa

manana @

efh a r I s 0 rg%?:ge oy g e . Cheers Zlkggz%"om"gwgg"‘qe

waitagratzias b'agﬂdarla dankn bmuitumesc [isaotra r,_osi

murakoze
barkalsobodimenlau _ | shakkran dnakuju grassie shukria
welalin

ari ato
vinaka . . merkzi
k trugéré g 4

INISOU sylpay bge i ta',',?g&'rg dekuji maururu

Augugliaro, Sottile and Vinciotti EMS 2019 July 22, 2019

ante

dankewol talofa obrigada
) h @ chokrane omol rac‘a dankegon E"tossl::l?l?#:;he
ngiyabonga takk soolong dakujem aabarshuknyaa ,, Salamat

29 / 29



	Introduction
	Censored Gaussian Graphical Model
	Conditional Censored Gaussian Graphical Model
	Computational aspects
	Simulation study

