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Introduction

Literature review

The problem of curves clustering is very complex and has been
recently addressed in several fields:

structural averaging in the context of computing an average
(Kneip and Gasser, 1992);
curves registrastion in statistics
(Silverman, 1995; Ramsay and Li, 1998);
time warping in engineering
(Wang and Gasser, 1997)
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Introduction

Literature review

In statistics:
Silverman, (1995) proposed a general approach, in which a target
curve must satisfy a predefined criterion;
Ramsay and Li, (1998) used a Procrustes fitting procedure
(Gower, 1975) to provide maximal alignment to the target function;
James, (2007) introduced a method for finding similarities
between functions by equating the moments among all curves;
Garcia-Escudero and Gordaliza, (2005) proposed a new approach
based on the trimmed k -means Robust Curve Clustering;
Adelfio et al., (2012) introduced a procedure to identify clusters of
multivariate waveforms;
Adelfio et al., (2016) focused on finding clusters of
multidimensional curves with spatio-temporal structure.
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Introduction

WHAT ABOUT CURVES CLUSTERING IN
GENERAL DEPENDENCE MODELS?
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Clustering of effects curves in quantile regression models Quantile regression (QR)

QR Koenker and Bassett Jr, (1978) and Koenker, (2005)

Let be y a response variable, and x a q-dimensional vector of
covariates. We assume that Q(p | x) = xTβ(p) is the p-th quantile of
y , given x . The vector of quantile regression coefficients, β(p), can be
estimated by

β̂(p) = arg min
β∈Rq

n∑
i=1

ωp,i(yi − xT
i β)

where ωp,i = I(yi ≤ xT
i β) and I(·) is the indicator function.

Issues
quantiles are estimated one at the time

the estimated coefficients are generally non-smooth functions of p
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Estimated quantile regression coefficient and 95% pointwise confidence
intervals (shaded area). The dotted line suggests a possible linear trend.
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Clustering of effects curves in quantile regression models Quantile regression coefficients modeling (QRCM)

QRCM Frumento and Bottai, (2016)

A parametric approach to model the quantile function estimating the
coefficients as functions of the order of the quantile p ∈ (0,1)

Q(p | x ,θ) = xTβ(p | θ),

x is the model matrix (N × q)

β(p | θ) = θb(p)

b(p) = [1, b1(p), . . . , bk (p)]T is a set of (k + 1) known functions

θ is the unknown parameter matrix

For example, the linear trend proposed in the previous figure could be described by
β(p | θ) = θ0 + θ1p, which correspond to b(p) = [1, p]T .
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Estimated quantile regression coefficient and 95% pointwise confidence
intervals (shaded area).
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Clustering of effects curves in quantile regression models Clustering of effects curves method (CEC)

CEC method Sottile and Adelfio

Aims
Our goal is to use the QRCM framework to answer two different
questions:

Univariate case. Given one response variable we estimate
β1(p | θ), . . . , βq(p | θ)⇒ the aim is to assess if these q curves,
can be clustered based on similarities of effects

Multivariate case. Given m response variables we estimate
β11(p | θ), . . . , βmq(p | θ)⇒ the aim is to assess if there are
similar responses given covariates
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Clustering of effects curves in quantile regression models Clustering of effects curves method (CEC)

Our proposal
A new dissimilarity measure, that accounts both for the shape and for
the distance:

the shape evaluated using its second derivative. Moreover, two
different curves are similar in shape if, at any given point, the
signs of the second derivatives are concordant;

d ii ′
shape(p) = I(sign(β′′i (p | θ))× sign(β′′i ′(p | θ)) = 1)

the distance between two curves evaluated as their differences
with respect to other curves. Two curves are said close if their
distance at any given point is lower than a fixed value;

d ii ′
distance(p) = I(|βi(p | θ)− βi ′(p | θ)| ≤ f (α,dist(p)))
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Clustering of effects curves in quantile regression models Clustering of effects curves method (CEC)

The cut-off function
The f (·, ·) function depends on a probability value α, and on dist(p)
that is, for each percentile, the distribution of all possible distances
among curves. Therefore, the cut-off function selects the α-th
percentile of dist(p)

The role of α
α is the probability value, and it has a central role for finding
hoogeneous clusters. Its choice depends on the goal of the analysis
and has to be fixed by the researcher.
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Clustering of effects curves in quantile regression models Clustering of effects curves method (CEC)

The new dissimilarity measure

d(i , i ′) = 1−
∫ 1

0

[
d ii ′

shape(p) · d ii ′
distance(p)

]
dp

The product of the two measures is computed, to account for their
concordance at each point.

Optimization
We implemented the above measure in the clustEff R package.
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Clustering of effects curves in quantile regression models Computation

Computation

Pseudo code of the algorithm implemented in the clustEff package

Step Algorithm
1 fix the α-level and calculate dist(p) for each p ∈ (0,1)
2 the cut-off function f (·, ·) selects the percentiles of

the distribution of dist(p) used in d ii ′
distance(p)

3 compute d ii ′
shape(p), d ii ′

distance(p), and hence d(i , i ′)
4 apply a hierarchical clustering algorithm to the dissimilarity

matrix in order to obtain the dendrogram
5 select the optimal number of clusters l∗, unless it is known

in advance
6 calculate goodness-of-fit measures
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Clustering of effects curves in quantile regression models Computation

Choice of the number of clusters

Effects curves

πl
=l

l∑
j=1

q−1
j

qj∑
i=1

{∫ 1

0
I
(

LBj(p) ≤ β i
j (p | θ) ≤ UBj(p)

)
dp
}
,

The value l∗ is identified by that partition for which πl − πl+1 is minimized

General curves

distlrel = l sup
j∈{1,...,l}

{
q−1

j

qj∑
i=1

∫ 1

0
|β j(p)− β i

j (p | θ)| dp
}
.

The value l∗ is identified by that partition for which distlrel− distl+1
rel is minimized
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Clustering of effects curves in quantile regression models Simulations

Simulation scenario 1

Clusters of effects
We considered a multivariate scenario in which the general quantile
function was defined by

Q(p | x ,θ) = β0(p | θ) + β1(p | θ)x

where x ∼ U(0,5).

We defined three quantile functions and generated 30 response
variables, 10 for each of them, using polynomial trends, i.e.,

1. Q1(p | x ,θ1) = (1 + φ(p)) + (.5 + .5p + p2 + 2p3)x
2. Q2(p | x ,θ2) = (1 + φ(p)) + (−3 + .5p + p2 + .5p3)x
3. Q3(p | x ,θ3) = (1 + φ(p)) + (.3− .5p − p2 + 2p3)x
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Output of the proposed algorithm for one replicate. The left panel shows the
dendrogram; the middle panel shows the 30 curves clustered in 3 groups; the right
panel shows the boxplot of the average dissimilarity within each cluster.
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Clustering of effects curves in quantile regression models Simulations

Simulation scenario 2

Waveform clustering

We simulated 30 harmonic functions evaluated at a grid of size 1000
1. f (t) = sin(3πt) (×10)
2. g(t) = cos(3πt) (×13)
3. h(t) = sin(3πt) cos(πt) (×5)
4. l(t) = 0 (×2)

A random error εt ∼ N (0, σt) was added to each curve to define a
segmented relation with multiple change-points, such as

σt = 4 max(t − 0.2,0)− 8 max(t − 0.5,0) + 4 max(t − 0.8,0)
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Output of the proposed algorithm for one replicate. Upper panels show the 4 clusters;
bottom-left panel shows the dendrogram; bottom-right panel shows the boxplot of the
average dissimilarity within each cluster.
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Simulation scenario 2

Waveform clustering

We simulated 30 harmonic functions evaluated at a grid of size 1000
1. f (t) = sin(3πt) (×10)
2. g(t) = cos(3πt) (×13)
3. h(t) = sin(3πt) cos(πt) (×5)
4. l(t) = 0 (×2)

A random error εt ∼ N (0, σt) was added to each curve to define a
segmented relation with multiple change-points, such as

σt = 4 max(t − 0.2,0)− 8 max(t − 0.5,0) + 4 max(t − 0.8,0)
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Clustering of effects curves in quantile regression models Simulations

Simulations

Methods
funFem: a functional mixture model
(Bouveyron and Brunet-Saumard, 2014)
FPCA: a k -means algorithm based on the principal component
rotation of data (Adelfio et al., 2011)

Mesasures

Area(l∗) = l∗−1∑l∗
j=1

{
q−1

j
∑qj

i=1

∫ 1
0

(
| β j(p)− β i

j (p | θ)|
)

dp

ρdist(l∗) = l∗−1∑l∗
j=1

{
1−

[
2
(

qj(qj − 1)
)−1∑qj−1

i=1
∑qj

z>i ρiz

]2}
the average number of clusters l∗
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Clustering of effects curves in quantile regression models Simulations

Simulations

Average area, average distance based on correlation (ρdist) and average of the optimal
number of discovered clusters (l∗) using the three different algorithms (clustEff,
funFEM and FPCA) and as benchmark measure the true partition of curves in the 100
runs. SD in brackets.

True clustEff funFEM FPCA

l∗ 3.00(0.00) 3.51(1.63) 5.06(0.98) 3.35(0.63)
Sim 1 Area 0.216(0.091) 0.205(0.091) 0.178(0.079) 0.206(0.090)

ρdist 0.010(0.015) 0.010(0.015) 0.008(0.008) 0.010(0.015)

l∗ 4.00(0.00) 4.23(0.95) 3.44(1.05) 3.83(0.38)
Sim 2 Area 0.133(0.102) 0.130(0.099) 0.177(0.146) 0.142(0.116)

ρdist 0.441(0.177) 0.426(0.175) 0.436(0.203) 0.437(0.171)
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Clustering of effects curves in quantile regression models Application

Inspiratory capacity data

A study carried out in 1988-1991 in Northern Italy
N = 2,045 subjects (51% Male and 49% Female)
q = 9 (age, height, body mass index (BMI), sex, current smoking
status, occupational exposure, cough, wheezing and asthma)

The model basis

Intercept: b(p) = [1, log(p), log(1− p)]T

Covariates: a shifted Legendre polynomials up to a 5th degree
(Abramowitz and Stegun, 1964)

Table 1: Average area, average correlation (ρdist) and average of the
optimal number of discovered clusters (l∗) are compared across the
three algorithm (clustEff, funFEM and FPCA).

clustEff funFEM FPCA

l∗ 5 3 3
Area 0.004 0.039 0.039
ρdist 0.197 0.710 0.710
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The five clusters obtained applying the clustEff algorithm on the estimated quantile
regression coefficients of inspiratory capacity dataset. Black solid lines are the mean
curves; the dashed lines are the effects curves; the shaded areas are identified by the
mean lower and upper bands within each cluster. The dotted line indicates the zero.
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Conclusions

To sum-up

We proposed a new dissimilarity measure based on similarities in shape
and distance among general curves, both effects curves (in QRCM) or
waveform curves;

We developed the clustEff R packages implementing the proposed
algorithm;
Results of two different simulation scenarios showed good performance
of our proposal with respect of two competitors funFEM and FPCA;
Results on the Inspiratory Capacity data showed a variable selection
perspective.
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Thanks for the attention!!!
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